The Outer Automorphism of S_6

Meena Jagadeesan¹ Karthik Karnik² Mentor: Akhil Mathew

¹Phillips Exeter Academy

²Massachusetts Academy of Math and Science

PRIMES Conference, May 2016

PRIMES Conference, May 2016

< 17 >

What is a Group?

Definition

A **group** G is a set of elements together with an operation that satisfies the four fundamental properties: closure, associativity, identity, and inverses.

Our Focus: Symmetric group S_n

Set = permutations π of *n* elements; Operation = \circ (composition)

- Closure: For $\pi_1, \pi_2 \in S_n$, $\pi_1 \circ \pi_2 \in S_n$
- Associativity: For $\pi_1, \pi_2, \pi_3 \in S_n$, $(\pi_1 \circ \pi_2) \circ \pi_3 = \pi_1 \circ (\pi_2 \circ \pi_3)$
- Identity: Take permutation $e = \pi$ such that $\pi(i) = i$ for all $1 \le i \le n$.
- Inverses: For inverse of π_1 , take π_1^{-1} such that $\pi_1^{-1}(i) = j$ iff $\pi_1(j) = i$.

What is an Automorphism Group?

Definition

Given a group G, the **automorphism group** Aut(G) is the group consisting of all isomorphisms from G to G (bijective mappings that preserve the structure of G.)

PRIMES Conference, May 2016

Example: $Aut(S_2)$ $(S_2 = \{ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \})$

- $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ is the identity
- An automorphism f must send $\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ to itself
- f must send $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ to itself
- f is the identity e
- This means Aut(S₂) is trivial

Example: $Aut(\mathbb{Z}_2 \times \mathbb{Z}_2)$ ($\mathbb{Z}_2 \times \mathbb{Z}_2$ is group of pairs of elements modulo 2)

- \blacksquare Observe that $\mathbb{Z}_2\times\mathbb{Z}_2$ consists of the identity and three other elements of order 2
- An automorphism f must send the identity to itself
- The other three elements are permuted by f
- This means that $Aut(\mathbb{Z}_2 imes \mathbb{Z}_2) \cong S_3$

What is an Inner Automorphism?

Definition

An **inner automorphism** is an automorphism of the form $f: x \mapsto a^{-1}xa$ for a fixed $a \in G$.

This gives us an automorphism of G for each element of G. There might be repeats. (If G is commutative, then f is always trivial)

Trivial inner automorphisms = Z(G) (elements that commute with all other elements)

Theorem

The inner automorphisms Inn(G) form a normal subgroup of Aut(G) and $Inn(G) \cong G/Z(G)$

Complete Groups

Definition

A group G is **complete** if G is centerless (no nontrivial center) and every automorphism of G is an inner automorphism.

 $G \text{ complete} \Rightarrow Aut(G) \cong G$

Theorem

 S_n is complete for $n \neq 2, 6$.

The center of S_2 is itself. S_6 is a genuine exception:

Theorem (Hölder)

There exists exactly one outer automorphism of S_6 (up to composition with an inner automorphism), so that $|Aut(S_6)| = 1440$.

Meena Jagadeesan, Karthik Karnik Mentor: Akhil Mathew

The Outer Automorphism of S_6

Transpositions

Definition

A **transposition** is a permutation $\pi \in S_n$ that fixes exactly n-2 elements (and flips the remaining two elements).

Lemma

An automorphism of S_n preserves transpositions if and only if it is an inner automorphism.

Meena Jagadeesan, Karthik Karnik Mentor: Akhil Mathew

PRIMES Conference, May 2016

Proof Overview: Completeness of S_n for $n \neq 2, 6$

- Let T_k be the conjugacy class in S_n consisting of products of k disjoint transpositions.
- A permutation π is an involution if and only if it lies in some T_k .
 - If $f \in Aut(S_n)$, then $f(T_1) = T_k$ for some k.
- It suffices to show $|T_k| \neq |T_1|$ for $k \neq 1$.
 - This is true for $n \neq 6$.
 - For n = 6, it turns out that $|T_1| = |T_3|$ is the only exception.

Image: A math a math

Transitive Group Actions

Definition

A group G acts on a set X if each element g is a permutation π_g of the set X satisfying $\pi_e = e$ and $\pi_{gf} = \pi_g \circ \pi_f$.

Example 1: S_n acts on $\{1, 2, 3, ..., n\}$. **Example 2**: S_{n-1} acts on $\{1, 2, 3, ..., n\}$ by fixing *n*. **Example 3**: *G* acts on the coset space G/H by multiplication.

Definition

A group action is **transitive** if for each pair $(x, y) \in X^2$ there exists $g \in G$ such that g(x) = y.

Examples 1 and 3 are transitive group actions, but Example 2 is not.

Meena Jagadeesan, Karthik Karnik Mentor: Akhil Mathew

The Outer Automorphism of S_6

Key Step: Construct a 120-element subgroup H of S_6 that acts transitively on $\{1, 2, 3, 4, 5, 6\}$.

- This subgroup cannot be S₅ or any of its conjugates (none are transitive subgroups).
- Consider the action of S_6 on the 6-element coset space S_6/H .
- Let f the corresponding mapping from S_6 to S_6 .
- Note that $f : H \mapsto S_5$. (*H* fixes coset consisting of *H* and permutes all other cosets. *H* has order 120, the same as S_5 .)
- H (the preimage of S_5 in f) is transitive.
 - The preimage of S_5 is not conjugate to S_5 .
 - f cannot be inner.

< (17) > <

The Outer Automorphism of Se

Simply 3-transitive action of PGL₂(F₅) on the six-element set P¹(F₅)

PRIMES Conference, May 2016

2 Transitive action of S_5 on its six 5-Sylow subgroups

Construction 1: Properties of $PGL_2(K)$

Let K be a field.

Definition

 $GL_2(K)$ is the set of 2x2 invertible matrices, whose elements are in the field K.

 $PGL_2(K)$ is the quotient of the group $GL_2(K)$ by the scalar matrices K^{\times} (nonzero elements of K).

 $P^{1}(K)$ is the set of one-dimensional vector spaces (lines) in K^{2} .

- There is a natural action of $GL_2(K)$ on $P^1(K)$
 - Permutation of the lines through the origin in K^2
 - Matrices of the form

 $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix},$

where $a \in K$, fix lines, so we have an action of $PGL_2(K)$ on $P^1(K)$

- Now, P¹(K) can be identified as the union of K and a "point at infinity"
- We consider the following points in $P^1(K)$:
 - The point [0 : 1], represented by the column vector $\begin{bmatrix} 0\\1 \end{bmatrix}$
 - The point [1 : 1], represented by the column vector $\begin{bmatrix} 1\\1 \end{bmatrix}$
 - The point [1 : 0], corresponding to the "point at infinity"
 - Each column vector spans a line, which is a point of $P^{1}(K)$

Construction 1: Linear Fractional Transformations

Definition

The Outer Automorphism of S6

A linear fractional transformation is a transformation of the form $f(x) = \frac{ax+b}{cx+d}$, where $a, b, c, d \in K$ and $ad - bc \neq 0$.

- PGL₂(K) can be identified with the group of linear fractional transformations
- Through linear fractional transformations (for instance, f in the definition above), we can take the point $-\frac{d}{c}$ to the "point at infinity" and the "point at infinity" to the point $\frac{a}{c}$ when $c \neq 0$

< ロ > < 回 > < 回 >

Construction 1: $PGL_2(K)$ is simply 3-transitive

Definition

A group action is **simply 3-transitive** if for all pairs of pairwise distinct 3-tuples (s_1, s_2, s_3) and (t_1, t_2, t_3) , there exists a unique $g \in G$ that maps s_i to t_i for i = 1, 2, 3.

Note: simply 3-transitive actions are quite rare.

Lemma

The action of $PGL_2(K)$ on $P^1(K)$ is simply 3-transitive.

- Consider the function $f(x) = \frac{x-a}{x-c} \cdot \frac{b-c}{b-a}$.
- f maps $a \mapsto 0$, $b \mapsto 1$, and $c \mapsto \infty$.

f maps any three arbitrary points are mapped to [0:1], [1:1], [1:0]

PRIMES Conference, May 2016

Meena Jagadeesan, Karthik Karnik Mentor: Akhil Mathew

The Outer Automorphism of S_{6}

Construction 1: Computing the order of $PGL_2(\mathbb{F}_5)$

- Let *K* be a finite field of *n* elements.
- |PGL₂(K)| = |GL₂(K)|/n-1 since PGL₂(K) is the quotient of GL₂(K) by the scalar matrices K[×].
- A matrix in $GL_2(K)$ is represented by a nonzero row vector $v_1 \in K^2$ and a row vector v_2 that is not a scalar multiple of v_1 .
 - Thus,

$$|GL_2(K)| = (n^2 - 1)(n^2 - n).$$

and

$$|PGL_2(K)| = \frac{(n^2-1)(n^2-n)}{n-1} = n^3 - n.$$

Observe that when K = F₅, we have a group of order 120 that acts simply 3-transitively on the six-element set P¹(F₅)

Construction 2: Sylow Subgroups

Definition

Consider a group G with order of the form $p^n \cdot a$ for some prime p, positive integer n, and a relatively prime to p. A **p-Sylow subgroup** of G is a subgroup of order p^n .

Theorem (Sylow)

For a group G with order divisible by p, there exists a p-Sylow subgroup. Let x be the number of p-Sylow subgroups. Then,

 $x \equiv 1 \pmod{p}$ and x ||G|.

All p-Sylow subgroups are conjugate. (For every pair of p-Sylow subgroups H and K, there exists $g \in G$ with $g^{-1}Hg = K$.)

Image: A math a math

Construction 2: Action of S_5 on 5-Sylow Subgroups

- The 5-Sylow subgroups of S₅ are the exactly the subgroups generated by a 5-cycle. Let X be the set of these subgroups.
- Then, $|X| \equiv 1 \pmod{5}$ and |X| | 120 so |X| = 6.
- Consider the action of S_5 on X by conjugation (g sends X to $g^{-1}Xg$).
 - By Sylow's theorem, this action is transitive.

Construction 2: Injective Homomorphism from S_5 into S_6

• The action gives a homomorphism $f: S_5 \rightarrow S_6$, since |X| = 6.

PRIMES Conference, May 2016

- *ker(f)* (elements that *f* maps to identity) forms a normal subgroup, so *ker(f) = A*₅, *S*₅, {*e*}.
- Since the action is transitive, $|ker(f)| \le |S_5|/6 = 20$.

• Hence |ker(f)| = 1.

• Thus, im(f) is a transitive 120-element subgroup of S_6 .

Conclusion

- We presented two methods of constructing a 120-element transitive subgroup of S_6 .
 - Action of $PGL_2(\mathbb{F}_5)$ on $P^1(\mathbb{F}_5)$
 - Action of *S*₅ on its 5-Sylow subgroups
- These transitive subgroups can be used to construct an automorphism of S_6 whose preimage of S_5 is transitive.
 - This automorphism is outer.
- S₆ is the only symmetric group apart from S₂ that is not complete. Recall that a complete group is a centerless group with no outer automorphisms.

We would like to thank

- Akhil Mathew (Harvard), our mentor
- MIT-PRIMES Program

Texts used:

- An Introduction to the Theory of Groups by J.J. Rotman
- Algebra by S. Lang
- Topics in Algebra by I.N. Herstein